【統計検定1級過去問】2019年(統計数理)大問4 解答例

投稿者: | 2020-04-25

コメント

ネイマン・ピアソンの基本定理に関する問題が出題されました。

限られた準備時間の中でネイマン・ピアソンの基本定理まで手が回らないケースも多いと思いますが、統計学のページで紹介している

などで準備1)なお、記事中の尤度比とこの問題の尤度比は分子、分母が入れ替わっていますが本質的には同じ議論になります。していた人には解きやすい問題だったと思います。

問題

次の確率密度関数を持つコーシー分布を考える。

[math]
f_\theta(x) = \dfrac{1}{\pi\left\{1+(x-\theta)^2\right\}} \quad (-\infty < x < \infty) [/math]

この分布から大きさ1の標本[math]X[/math]に基づき

  • 帰無仮説: [math]\theta=0[/math]
  • 対立仮説: [math]\theta=1[/math]

に対して検定したい。ここで、棄却域を[math]R = \left\{x\ |\ 1 < x < 3\right\}[/math]とする検定を考える。この時、以下の問いに答えよ。ただし、[math]\tan^{-1} 2=1.107[/math], [math]\tan^{-1} 3=1.249[/math], [math]\pi=3.1416[/math], [math]\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}[/math]を用いて良い。

(出典:統計検定HP「統計検定 1級の過去問題」。問題文を一部略記。)

問1

この検定のサイズ(第一種の過誤確率)[math]\alpha[/math]を小数第3位まで求めよ。

第一種の過誤確率は「帰無仮説が正しい場合に帰無仮説を棄却してしまう確率」なので

[math]
\begin{eqnarray}
\alpha &=& P\left(X\in R\ |\ \theta=0\right) \\
&=& \int_0^3 \dfrac{1}{\pi(1+x^2)} dx \\
&=& \dfrac{1}{\pi}\left(\tan^{-1} 3-\tan^{-1} 1\right) \\
&=& \dfrac{1}{\pi}\left(1.2349 – \dfrac{\pi}{4}\right) \\
&=& 0.148
\end{eqnarray}
[/math]

である。

問2

この検定の検出力[math]1-\beta[/math]([math]\beta[/math]: 第二種の過誤確率)を小数第3位まで求めよ。

第二種の過誤確率は「対立仮説が正しい場合に帰無仮説を棄却しない確率」なので

[math]
\begin{eqnarray}
1-\beta &=& 1 – P\left(X\notin R\ |\ \theta=1\right) \\
&=& P\left(X\in R\ |\ \theta=1\right) \\
&=& \int_0^3 \dfrac{1}{\pi\left\{1+(x-1)^2\right\}} dx \\
&=& \dfrac{1}{\pi}\left(\tan^{-1} 2-\tan^{-1} 0\right) \\
&=& \dfrac{1.107}{3.1416} \\
&=& 0.352
\end{eqnarray}
[/math]

である。

問3

尤度比[math]\lambda(x)=\dfrac{f_1(x)}{f_0(x)}[/math]の[math]x=1[/math]と[math]x=3[/math]における値と[math]\lambda(x)[/math]の概形を描け。

[math]\lambda(x)[/math]を求めると

[math]
\begin{eqnarray}
\lambda(x) &=& \dfrac{f_1(x)}{f_0(x)} \\
&=& \dfrac{1+x^2}{1+(x-1)^2}
\end{eqnarray}
[/math]

である。これより[math]\lambda(1)=\lambda(3)=2[/math]である。

次に[math]\lambda(x)[/math]の概形を求める。まず

[math]
\lambda(x) = \dfrac{1/x^2+1}{1/x^2+(1-1/x)^2}
[/math]

と変形できるので[math]x\to \pm \infty[/math]の時、[math]\lambda(x)\to 1[/math]である。また

[math]
\log\lambda(x) = \log(1+x^2) – \log\left(1+(x-1)^2\right)
[/math]

より

[math]
\dfrac{d}{dx}\log\lambda(x) = \dfrac{2x}{1+x^2} – \dfrac{2(x-1)}{1+(x-1)^2} = 0
[/math]

を解いて[math]x=\frac{1+\pm\sqrt{5}}{2}[/math]で極値をとる。以上より概形を示すと下図になる。

問4

この検定はサイズ[math]\alpha[/math]を有意水準とする検定の中で最強力検定になることをネイマン・ピアソンの基本定理を用いて示せ。

考えている検定は単純仮説に対する検定であり、棄却域[math]R = \left\{x\ |\ 1 < x < 3\right\}[/math]は上図より尤度比に基づく棄却域[math]\left\{x\ |\ \lambda(x) > 2\right\}[/math]一致する。よって、ネイマン・ピアソンの基本定理からこの検定はサイズ[math]\alpha[/math]を有意水準とする検定の中で最強力検定である。

シリーズ記事

脚注   [ + ]

1. なお、記事中の尤度比とこの問題の尤度比は分子、分母が入れ替わっていますが本質的には同じ議論になります。

スポンサーリンク


【統計検定1級過去問】2019年(統計数理)大問4 解答例」への1件のフィードバック

  1. ピンバック: 【統計検定1級過去問】2019年(統計数理)大問1 | 有意に無意味な話

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です